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The soaplate theoratinal treatnont of roactivs assembliss is exceodingly
coaplox, and a largs parl of Volums IV of ths Teohnical Series is dedicatsd to
the problea of predictinz the propertlies of a chainersactive asasably from thes
nuclear properties »f the materials in it and {rom the gaometrioal arrangsuwont
of these materials,

For the purposs of this volume we inoluds a brisf phenomenological theory
of raactive assenblies which is bazed mainly on the following assuapbtions:

(1) Each neutron produces K daughtar neutrons on an avarags,
(3} If a proapt neutrom produsos fission it doss so, on an avsrugs,

a fter the time ’fo.

(3) Delayad neutrons havs s ¥ tines greatar chanes of causing fission
than proant neubrons,

In this treataent we noglsot the fact that the prohabllity for a neutron to
canzo fission depends on the place whars it is bora and on the time that has elaps-
od since its birth. Wo shallnobt discura the mzthads oy which K,'L’O.mr? ¥ can bte
saloulated from the nucloar and geomstrical charactsaristiocs of the assembly. (Some
of these mathods sre desoribed brisfly in Chaptar 2,.,) WNe shall discuss, whoravaer
nesded, how X, T,, and ¥ ars affeated by thoss changes in configuration or cone
poalition of the assonbly which are mnads in the course of expsarlasnt, .

2.1 TI4E BEHAVIOR OF REACTIVE ASSEMBLIIS

The fission rate F(t) at tho time % in a reactive asseably is mads up of two
kinds of fissions., First, thers ars the "source fissions"; that iz, thoss caused
by the presenss of a (non-fission) neutron source, and the spontansous fissions;
in other words, all those fissions which are not caused by nsutrons due to soww

previous f‘ission, uecondlj,,.t'qsr? s.re‘.tﬁe “daughbar Fissions"; that Is,
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2ll those which are caused by a neth-“rén'oti'ué %0 scne orevicus fissicn, Thias
would include, for instance, phctoneutrons emitted from a beryliium tamper
tecause ¢f the garra-radiation of scme fissicn praduct,

ra rate of scurce fissions, S(t} may cr may not depend explicitly on the
time 4, but it certaiply does nct depend on the previcus fission history of the
systen, The daughter fissicns, however, do, Some of them are caused by “prompt
reutrens, i,e., those which are emitted within an exceedingly shert time
(< 10712 geconds according to nuclear theory, < 10~9 geccrds according tc
experinertal evidence) of the fissicn itself, and cause fissicn after an average
tire T, which lies belween shout 16=2 for a Pu-239 cr U~235 metal gssembly, and
abont 107%secends for a grarhite pile, Others are caused by "delaved™ neutrons
which a re emitted by certain fission fragments ("pregnant nuclei™) after a time
sf the order of secondg, The decay curve for the pregnant nuclel is fairly
well known both in the cass of Pu~239 and U-235,

We introduce the function K, p{T JAT tc indicate the probability .bhat a
given fissicn should produce a daughter fissicn at the time ¥ & 172 4T
The average number of da:g;hter fissicns produced by a ainple figsion is found
by integration as K /p,(‘t YT « This nmumber has previcusly been called K

9

and our way of introducing p{ T ) therefere normalizes it, s¢ that

oa

/p(t)dt z 1 (1)
O - 1 B

”

We can ncw write down the fission rate F(t) at the time t as the suu of

gearcs fissions and daughter {igsicns ard get
=]
Fit) =8(t) + K /F(t ~T(TWT (2)

OJ
This equation is a convenient starting point for all calculaticns in this
charter, It connects the fission rate at a given time t with the physieal

conditicns of the syshem at this time ahd with the fissicn rates at all previcus
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1ineg, It assumes that the configuratlon of the system, and hence hoin ¥ anc
U LY, An net change rapidly with time, We shall discuss later how the
#auation (2) has te be amendeld if this conditicn is not fulfllled,

Let, us now congider some siuple cases,

o F Fxd '8‘3:\:-::1 (3‘;
- K

Trnis equation ecan 2lsc he solained sizpiy by adding up source fissions, priwmiry,
suoandyry, hertiary daughter fissiorns and so ony

. i n , 2
F oS RS + B8 K% a4 2801 4K oK + K s

e oa

10} ,ﬁ/(l - K:’

L3
85 £ syproachas unlty, the eguilitirium fission mte gees to infinluy,

(61 8 = constant, K = 1
Trere is no stationary selutizn (sther than F o= ool bul a2 soluticn wherse F

{nereases linearly with time,

F(t} = al = 8 »«;/,a(t =Tl MT
[¥]
=8 3+at -aT

a:;.g,
T

{4)

t
F o8z g
T

“

Piosically this is easy t¢ ser, If K = 1 each flsslon prodices axactly cne
[ ]
dzuchter fission (cn the average) afler the time T tﬁp( t)dt . Hence
o
svery extia fiasfon produced will increase the flsgion rate permarently by a
rate of one flgalon every T secends, Tre value cf T is obtained by averaging
ever all neatrons, prompt and delayed, and is about .1 second,
(¢} S and K constant bul not Fg
To.sohe our integral Equatien {2) we wust make scme assumption about p(T ),

The simplest assumptlon that agrees reascnably well with the facts in most cases

45 UNCLASSIFIED
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The ccnditicon /p(t JAT =1 is ther® (u’rllled if ) f,.3} «Urder this

o ;: .

agsumption about p( v}, the general soluticn of our integral eguation is of
the form

3 ot J\.jt

F(t) = 1-f , a; s (6}

where the a; are artitrary constants which, in every spectal case, have to
be computed from the boundary conditicns of the problen,
To ealculate the values of /\ We AsSune 84y = 1, a

write/. f@r‘f\., « Our intepral equation ther beccmes

s Nt /."13 At — N AT
T+ ? = sk J(g e ) 2 BN e a1

[« o]
At ALL-T) «Akt
.} K o f‘_ . at oy
5 ¥ ‘\_.l)

-‘./\_‘v i1
4 N -
- A /T f')x. a . dt
n
ey /ﬂv" - ( 4\. &/)\k )—t bl )\k
¥ 2 fk}\k/ ° oL AP
/] }':

Bauaticn (7) is of the n'P degree in _\ and hence cannct te sclved explicitly
forn ‘) 4, However,scme simple concliusions can te drawn without sclving the
aquation,
(1) BReing of the nth degree, 1t must have n scluticns for ./'l\.,
(2} A1l sclutions are real, Plctting the ripght hand side of
Equation (7) against /\ we get a curve which has a negative slope
everywhere except at the points where . A becomes equal to ore of
the >\ k. At these peintsg the curve jumps from-o3 to + ox , A
typical curve i3 shown in Figure 1, The intersecticons of this curve

with a line Arawn at height 1/K a re the sclutions and there must be

n of them, oo 3% e
i is s UNCLASSIFIED
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. . | (3) As long as K< 1, all solutions are negative, (SinCQka =
a positive value of A would make the right hand side cf Eguation (7)
< lor K>1,) Therefore, as long as K < 1 all the time dependent
sclutions of our integral equationare sums of exponentlals which
decrease with time, leaving eventually only the time-independent
scluticn S/(1 - KY which is,therefore,indeed the equilibrium fission
rate,
(4) TIf K > 1, one solution for /\ becomes posizive, It represents
an exponential which grows with time and which cventually exceeds all
other terms, The other sclutions, however, are all sti1l negative and
not very different from the corresporviing values of}\k (with the
exception of the smallest ;\k).
It is seen that the time behavior of the assembly {35 fairly complicated and
not in gencral to be described by a eimple exponential, If one suddenly alters
- the conditions of the gystem (fcr instance, by removing or introducing a neutron
_source or by altering the arrangement of tamping material) the subsequent fission
rate is 3 superposition of all the solutions just mentiored, with coefficients 3
which depend on the character of the alteration, After a while the solutions
with the greater (negative) vslues cf /\die cut and only the one with the leagt
negative./\ is left, dence, after changing the reactivity of an assembly, for
instance in an attempt tc make it just oritical, orne always has to wait about a
minute or two for the transitory effects to die cut before on2 can judge the
effect of the change on the reactivity,
We said before that a certain fracticn, which we shall call f, of all the
neutrons is emitted nct in the figsion act itself but as a result of the
g £ ~decay of certain fission fragments ("pregnant nuclei®), The decay curve
- ‘ of thege delayed neutrons has been measured repeatedly, both for ¥-235 and Pu-239,

and several attempts have been made to represent the curve as a sun of expo-

rnentials (which it ought to be,. .lf J«here gre several types of pregnant nucled,
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each with its charucteristic decay pericd). The two longest periods are quite
accurately known since it has been possible to isolate the corresponding
radiocactive isotopes (of bromine and iodine) by chemical metheds. Concerning
the shorter periods, different cbaservers don't agree too well. Actually, the
disagreement hardly effects the shape of the decay curve or the calculated time
behavicr of 4n assewbtly.

Since the delayed neutrons have lower energles than the prompt neutrcns,
their chance of producing a fission is different (usually larger) by a factor
which we call & . {An apprcxipate calculation of ¥ was attempted by F.
DeHoffmann in LA-471). Strictly speaking we shouid introduce a different ¥
for each of the different of pregnant nuclei, but not enocugh is yet known
about the respective neutron energies to justify such niceties,

The prospt neutrons are emitted within a negligible time of the instant
when the neutran which caused the fisszion hit the nucleus. However, they have
to travel sone distance and in some czses have to be slowed down, before they
can cause fission thenselves. The aversge time lost in this way we call T,.
Of course scme neutrons may take shorter times dnd some (for inatance those
which return after having suffered seversl collisions in the tamper) may take
ruch longer:

Taking all this into account we can write

AL

p(t) = (1-¥£) p (¥) + & Ei x @)
where the first term refers to the prompt neutrons and £ is the fracticn of
neutrons which are deilayed. If we approximate this term by an exponential
PO(T.‘) = (1/ '%) e ~.t/‘° we have expressed p(t) entirely as a sum of exponentials
and can now express the time behavior of the system by Equation (6), with the
values of J\ determined by Iquation (7).

Equation (7) can also be used to determine K if the pericd T = 1/A
of the systen has been measured. We rewrite Equation (7) by subtracting both

. UNCLASSIFIED
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. sides from 1 and get
SFI S  S o P SNTLY S S A 3 . S
* -Z i R - «.-/-J k Loumt k./"\_+ /\k (i.a k Jf\.r. -Rk P k T+1 1
. 1 »
Ty T Ag y
If we furthermore make use of RBjuationg (5), {8) we get
I, - T
Kel 1 P m—m— i
5 (i my ¥ 2.9 TR,

This equstion can be further simplified if c¢ne considers that ¥f <€ 1 (aboat
L0035 to ,Q1),that T is,at the most,a few milliseconds while practical values
of T are usually a second or more, and that in the intereating casea,K is

close to 1, Hence we can write approximately

‘ T q. T,
5K = K-l-_%-r?}'fzﬁ‘l‘:”

{9}
. This reactivity equation is often called the “inhour equation®, for reasons thab

will be apparent in the next section,

2,2 MEASUREMENT OF K

The behavior of a gsystem for which K = 1 is so characteristic that in this
cage the measurement of K presents no problem,  In systems which are slightly
sub=critical or super-critical, the quantity we want to measure is really ¥ -1

or § K which is often called the excess reacvivity, This is a noneiimensional

quantity and does not, as such, reguire a special unit, However, since tho
exnes3 reactivity is usually a small fraction of 1, it ic convenlent to use a
suitable uait smaller than 1, for instance the misrore !/,uﬁe) or misrceszactivity
- unit, The reactivity in microres is .equal to d K x 1()0,
. The absgolute measurement of the sxcess reastivity is quite Jdiffiecult, One

mzthod which has been used with som2 success will be descrived presently, On

the other hand, relative measurements are fairly easy, That is, it is {airly
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APWELEASE Cl ASS!F}gD




APPROVED FOR PUBLI C RELEASE

T UNCLASMIFIED

eagy Y0 compare the axcess reactivities of one reactor in two different stabes,
Several arbitrary units have been used, sach as the ®inhour®™ and the ®cent®,
Theirvalue on Lthe abgolute scals differs from one reactor to the other
depending on the value of & (the relative efficiancy of delayed and prompt
neutrons), and on the material (plutoniwe or U-235) used,

2,2-1 Absolute Measurements (The “Boron Bubble™)

I B e ot

Ideally, the multiplication constant of a reasior csould be measured by
fntroducing a2 zaiibrated neuiren source and hhen meaguring aow many additicnal
neubrens are produced through the fission chains, In practize Such a procedure
would Le wery diffieuls, The sourse would have to have the sime anergy
distribution as the flsgion neutrons, and its distrinutien in spaze would have
te be the same, This might be achieved by suitable averaging of a number of
measuremants carried cul with the source placsed at different points, However,
there would s%ill be the difficulty of an absolute measurement of the total
aunber of neutrona produced in the system,

An iangenious way of avoiding these difficultiss i3 the so-salled "boron
bubbla® mathod, A small portion of the reactor is replacel by a boren-conbaining
material which has the same abgorphion and scattering of neutrons, but contains
no fissile meterial, {nis "boron bubble® ig moved to different places and a
sultable average of the results iy taken, The introduction of this boron bubhle
obviously decrzases the reactivity of the assenmbly, If it vepregents a frastion
v/¥ of the total volume of the fissils material, its introduction is, on an

average, equivalent to a reduction of K by that same fraction, Such a change,

knowa in absuvlate units, can be used to calibrabte any of the relative nmethods R

whizh are to be described in the naxht paragraph, The disadvantage of the method
is that the energy Jdependense of the fissloen oross section of U-235 and Pu-239

cannot be simulated by any nonfisgsile absorber, In order o calculate the ripght

amoun® of boron, one has to know bteforehand the eonergy spectrum of the neutrons

UNCLASSIFIED. ..
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in the system, which, furthermors,usually varies from point to point, Also, it is
not accurately true that all the boron bubbls dves is to absorb as many neutrons
as the fissile material which it replaces, because this statement is true only
on an average and not for each individual neutron energy, Experimants which have
been carried out by this method are described in Chapters 4 (Waterboiler) and

& (Hydrides) where the difficulties of this method are discussed in more detail,
2, 2-2 Ralative Measurements

For suberitical systems, a scale linear in K can be establisned by the simple
procedure of measuring the neuiron intensity in several different states of the
systam; for inatance for several different positions of the control road, The
reciprocal of the neutron intensity is a measure of 1 - K, the negative
"excess reactivity™, However,the units are completely arbitrary and depeand,
furthermore, on the constancy of the neubron detecteor used,

Several methods for ;neasuring the excess reactivity depend on the time
behavior of the system, If a reactor is slightlyt ahove critisal, the neutron
flux will grow exponentially with time (in the absence of a neutron source), and
this rate of growh is connested with the excess reactivity by Bquation (9).

In particular, for a system exceedingly .close to critical, the rats of growth

of the chain reaction is a linear function of K - 1 and the numbter of times the
flux e-folds in one hour is directly proportional to K - 1, This reasoning

leads to the unit called one "inhcur® which we may define as the change in
reactivity which will turn a just critical system intc cne with an e-folding

time of one hour, If T is one hour, it is much larger than any of the ti and
Equation (9) becomss K - 1 = §T/T, where T is the average time between
fiasions, as defined in the first sechion, If we inseri ¥ =1, T = .09 ssconds,
T = 3600 seconds, we find thai one inhour is a change of K by 2,6 x 10"5.

However, if ¥ ) 1, a3 in most of the assemblies discussed in this volums, then

the value of the inhour is greater than 2,5 x 10"5 by the same factor,

With an appropriately rapid contrel mechanism, T can be mavle as small

UNCLASSIFIED
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. ’ as about one second; on the other hani, Buation (9) can also be used for negative
values of T, but the measurement of K hecomes very inaccurate for XK smller
than, say, ,98, as can be seen from Figure 1, From Bguaticn (9) or from a
graphical representation of its relevant portion (the "inhour curve™) the
excess reactivity of a reactor in a given state can be immediately obtained in
units of cone inhcur, from a msasurement of T,

The valuesof K; and K; of a reactor in two different states can also be
coumpared, provided Kl and Ky are € 1, by making a sulden transition from one
state to the other, for instance by rapidly shifting the control rod, The
imrediate effect of this transiticn depends exclusively on the change in Kp,
the prompt-multiplicaticn constamt; she delaysd neutrenz take some time to
adjust themselves and may, therefore, be regarded as part of the source, in
the first instant, Since the prompt-multiplication is due to thae fracticn
1 = ¥f of all the neutrona emitted as a result of fission (see Egquation (8)),

. we have
’ ’ Kp= K( 1 ~¥f) (10}

Tnmediately after the transition we find the fission rate changed by a faztor

1-X 1K
A= R = 2 (1-Y1)
-Kpl 1-}:1( I-Xf; (1)

After several minutes the fission rats will have adjusted itself to the new

stbate of the system and will have changed altogether by a factor

B = iR
1 -Ky (12)

If both A and B are measured we can solve the two linear EBjuations (11) and

_ . (12) and get the two excess reastivities;
1-B ) (1-E)R
L-k =¥r5y 1K= Yty

L UNCLASSIFIED
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The difficulty lies in measuring A it is necessary both to effect the
transition and to record the change in fission rate within a time short compared
to the fastest delayed-neutron pericd, that is,within a fraction of a secend,

The change of fission rate with time is illustrated in the Figure 2 belcw.

The transition can sometimes be performed with sufficient spsed, tut pen

Figure 2

)
Ay

R

Fisasicon Rate

Tig»
recorders as were usad in most of cur experiments are not fast encugh to permit
an accurate determination of A, (See Chapter 5, Section 5.2)

Tne excess reactivity by this method is obtained in units of Z'f. Tne frac-
tion f of delayed neutrons is 006 for U235 and ,005 fer Pu=-239; 5,varies
from one system o another, It has been sugpested to use 2 f as a practieal
unit of excess reactivity and to call one hundredth of 3 f *one zent®, 1In
other words, 100 cents is the changs in K frum a Just oritical system to the
point where the prompt neutrons alons can support the reastion,

A variant of the "sudden change® method is that in which K is left
constant but the source is suiddanly changed, TI7,for instance,a source is
suddenly introduced into a subzritical sysvem, the multislication is et firss
omly 1/(1 - Kp) but grows within a few minutes to its equilibrium value
/(1 = K), A comparison betwaen the fission rate imnediately afier the
insertion of the source,and that some time later, gives the value of

(1 - K «K¥V/(1 - K} = C from where we find K = ¥ £/(C = 1) plue higrer

UNCLASSIFEED-
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terms in X £ which are negligikle, The difficulty of measuring G is the same
as that of rmeasurirg A ir tne®change-of-K® methed, Of course,both the
immediate and the ultimate change in fissicn rate is the same (apart from the

sign}, whether a given source is swidenly inserted or suddenly removed, and the

latter is often easier to do,

2,3 VEASURRMENT OF ¥

As it was pointed out in the last section,the value of the inhcur
for a U=235 systen with X =1 1s 2,5 x 10~%; that is, if a just eritical
gystem 1s changed 8o that K increases by 2,5 x 1(}"5, the fissicn rate will
then e~-fold in cne hour, This is very nearly the case fur a grapghite pile
where the main loss cof neutrons s in the system itself (for instance in U=228)
rather than by leakage; the competiticn between fissicn and absorption depends’
very little cn the sgeed of the neutrons,

However, in small reactors such as those which are describaed in this volume,
leakage is the main process competing with fissicn, and the slow delayed
neutrens (with mean energies of arcund 0.5 million electron volts) leak out much
less than the faster prompt neutrons (mean energy 1 to 2 willicn electron volts },
Hence, the factor ¥ which indicates the relative efficiency of delayed ard
prompt neutrons 48 > 1, The value of tre inhour is then greaher than 2,5 x
10"5 by a factor ¥ , Hence,an absolute calibraticn of the X scale, for
instance by the boron bubble method, amcunts t¢ a measurerent of Y « 1n this
way values of 1,3 - 1,6 for ¥ were observed in scrme cases, An experimental
measurenent of the quantity J f is given in Chapter 4, Section 4.2,

It might be possible to measure X directly by comparing the fissicn retes
cbtaired with two neutron scurces simulating the energy spectra of delayed
and prenmpt neutrons, respectively, No such measurarents were attempted,

Of course Zf'can never be greater than 1/ g the delayed neutrons cannot be

utilized beller than 100 per cent, anc pf the prompt wmes,at leagt the fraction

| W= UNCLASSIRIED
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1/V must be utilized to get the system critical,
F, de Hoffrann has shown how to caleulate under certain simple assumpticns,

(TA-471},

2, 4 MEASUREMENTS CF T,

To measure T

o is difficuit because cf its smallneze, In the water-

toiler (See chapter &) T, is about 10"4 seconds, in a hydride (See Chapter §)
aboat 106 saconds, in metal about 10~8 seconds,

On the cther hand, the very smallness cfT, is useful since it helps to
separate it froem the much longer periods of the delayed neutrens, 1If any of
the parzmeters which influence the fission rate (such as X er the scurce
strength S), is suddenly changed¢, the fission rate wiil adjust itself rapidly
Lo the new condition as far as the prompt neutrons are concerned while the
rate of emission of delayed neulrins can be regarded as essenLially constant,

Our furdamental Rpuation (2) can then bte written

' (<) -»z.

Fl¢) =8+5 +FK (F(t-t) e ¢ aT (13)
P 4 ’ i
o

where S‘ vapresents ithe delayed neutrens and is treated as time-~independent.
The time dependent part of the solution of this equation is found to be

proportional to

- t (=1
e % = € = To

Tnis fcllows directly from Bguation (7) if one replaces K by Kp, the cum by a
single term, A by = , f} by 1 and Akby 1/[%, .

If Kp \/ 1, the system is supercritical for prc;m;it. neutrong and will blew
up in a very short time unless steps are taken to prevent that, In Chapter 9
an experiment is described (the “"dragon experiment®) where the condition

Kp 7 lwas indeed realized, for a time short enough to prevent a disaster,

eosmmmmmn VVCLASSIFIED
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s Kp < 1, the system is not explosive, but the fissien rate will

grow in exponential fashion tecause of the delayed neutrons as long as
¥ > 1, If we want to do measurerents on a system in which the fissicn rate
does not prew exponentially, we have to keep K & 1, and hence
Krﬁ< 1 « ¥ (See Bquation (101}, In such a system £ is,of course,negative,
and [=h [ > J?/ﬁ;, Sirce ¥ £ is of the order of 1077, we see thst the “iime
sonstant® 1/} | of a weterboiler, a hydride reactor and 2 metal reactor are

of the opder of 10™° seconils, 10~ seconds and 10~% seconds, respactively,

It is possikle Lo produce neutren bursts of very short duraticn, for
tnstance by moiulating the team of a cyclotron (See Volume I of the Tesnnical
Series}), 1f such a burst of nevtrans 1s made tc enter a suberitical reantor,
§he fission rate immediately after the pulse will decrease exponenlially with
the time constant [ol| = (I-KP) /%b . The decrease can be ouserved by the
uge of scunting "channels® each of which is c¢perating cnly for a definite short-
time interval, a definite time after tre neutron burst, Fquiprent of this
type hes been used previcusly £ov measuring neutren velocities frem their time
of filight, and experinents in which Lime constanta of fissile reactors are
weasured by weans of a midulated nentrcn source are desaritie? in Chapter 8
of this volume,

The samn chapter alse descrites 2n Ingenicus variant of the modulated

m

roe methoed which was suggested by Brunoe Ressi, This varlant Jdepends on the

riy

a2t that statistical Fluctuaticns of any neutren scuree reprezent a kind of
midulaticn, and that it i{stherefore,nct necessary to apply external mcdulation,
A brief thesry of this methed i3 given in this chapter, in the section on
fiuetuationy,

walrd method whilch has been successfully tried depends on a moderately
rapid, pericdie varlation of K, To calculate the effects of such a varlation

on vhe fissien rate, we use again Bguation (2), We assume that both K and tue

- \mcmsmib
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fission rate F are the sur of a constant and a small purely harponic term
K, = Ko +Ke ™ 4 F o Fg 4 feiMF

Rquation (2) then beccmes

twt iwh iw(t-Thy =%,
Fg+fe ) s S+ (Kooi-Ke )/(FO'?fe‘ ™ ')e /%o dtT

0
F, = S+KF, Fo = 8/(1-K;)
-iw‘t-'t/'t’
f 2 KF + K, ’%f &
= KF + K f T-Tﬁ“io (14)
1 . 1=K 4wl Saky 1w -
£ =2 KF, w7y s KF, o o Ko 1w

5 -
I+iw‘t‘o (I'Ko) 4"2":95)
(In this caleulation the term with Kf has been neglected), The occurrence
of an imaginary term indicates that the variation in fission rate is shifted in

phase with respect to the variation, This phase shift is

(15}

¥ow (1 - Ko)/T, 1is nothing else but the average value of |ol.|, while K,
might be replaced by 1, for the sort of accuracy with which the rhase shift can
be measured, Lhe phase shift then becomes simply wl«t {, the usual value fer
‘a systen of time constant | J.i( for instance,a resistance R and capacity ¢, such
that 1/CR = l=t|) disturbed by a force {for instance,an electromotive force)
of frequency w/zn'. Hence, by measuring the phase shift one determires o .,
An experiment of this type is described in 1A-183 and in Chapter 4 of this
Volume, .

Tt is a ccmmon feature of all these methods of measuring T, that all one
really meagures is o< = (Kp-l)/'to . Hence to get T, one has to kncw the

(ﬂrc'mpt) excess reactivity Kp - 1, The difficulties of measuring excess

reactivities have been axplained in a previous section, UNC‘_ ASS‘F‘E&
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2.5 FIUGTUATIONS IN REACTIVE ASSEMBLIES

A nuclear chain reaction cengists of individual procaesges which happen at
random, This has the effect that if the same experiment is repeated several
tires, the results fluctuate, Such fluctuation occurs always when random events
are involved, as,for instance, in ordinary radicactive decay.; in nuclear chain
reactions the fluctuations are accentuated by the multiplication mechanism and
can assume formidable proportions,

R, Feyrnman in Volume VI of the Tachnical Series has described methods for
caleulating the fluctuations in certain cases which were of practical interest
tc the Project, carrying the calculation to a considerable degree of refinement
and complexity where this was regquired, In this chapter a simplified treatment
{8 intrcdiced, of a less ambitious scope, sufficient for the interpretation »f
the experiments with which this volume deale, The methcds used are largely
based on Feynman's report, but some of his equations are derived in a different
way wyhichwas first suggested by Ulam and Hawkins,

2,5-1 The Method of "Gegg_gat,ing Tunctions®,

A faw gereral remarks will make what follows easier, We are concerned with
experiments in which the result is a whole number, e.,g, the number of pulses
recorded during a given pericd, If one such experiment is repeated many tires
the result will in general fluctuate and we shall call Py the probability
that the result of one experiment is the number k¥ , Cne then defines the

@ .
gererating function P;Zpkxk whish is a very suitable vehicle for carrylng

all the statlistical infor;?ation .about, the experiment, and cne from which useful
information can te easilyextracted, Furthermore, the generating function of a
combined experiment is,in some cases,a simple algebraic combinaticn of the
generating functiens of the individusl experiments, It is convenient to asscciate
generating functions with fictitious experiments as wellj in other words, with

any cuestion starting with "How many?, This will be done, even if no methecd

UNCLASSIFIED
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has been devised to give an exact answer, or if the answer is not known. We
shall use bold capitals to indicate generating functions; for instance we shall
associate the function (b R ? ¢k ¥ with the question "How mary neutrons
are generated by an individual fissicn?" where ;?Jk is the prebability that just
k are generated. Equally, we shall use "| in connection with the question

"How many fissions eccur in a single chain in & given (subcritical) system?
altbough we know no wey of firding cut,

J,5=2 Combinations cf Experiments

If two (similar or different} experipents with the respective gsenerating

‘ functicn P and (3 _are made and their results are added, the generatirg

function of this combined experiment is the product of the individual

generating functicnes, F . G s Provided the cutcome of one experiment coes

rnot influencge that of the other,
For instance, the probability of getting the result "," i3 the proebability
of getting "O" in the [first experiment and "4" in the second, plus that of
getting "1* in the first and "3" in the second, etc, or fcg&-t f‘lg3-+ L84 f3gl+fhg0

This,however, §s just the coefficient. of x% in the product (i’o+ fox«+ f‘(‘_:{2+ R N
. <

1

lx + 52x2+ ssses)s In particular, if an experiment is done n timae, the

generating function relating to the sum of the m results is the nbh power of the

(g + g
C

generating function G‘ of the experinment..

In some applications the nurber n itself is determired by the cubcome of a
previcus experimert with the genersting function F‘ = fa.r £ X f2:c2+ seevan
The gensrating function of the combined experiment is I‘o+ fl. G + f2 G 2 4 eveee
=F (G ).
we nay state this as follows:

If_two experivents are performed in Ycascade® (the cutccne of the first

decides how many times the secend ovne is to be performed) the combined

@
generating function ig obtained by naking that ofﬂth_eﬂl‘irst operate con that

UNCLASSIFIED
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A {ew examples will make these things clearer, Llet us ceonsider a long-
lived radicactive sample in which ¥ atoms disintegrate wer s2cond on an average,
What is the generating functiorn TD associated wilh the quesgtion “How many
atoms disintegrate during one gecond?”

Let us firat solve this problem for a very short interval 4t | The
probablility that two 5r more atoms should disintegrate in 4t is negligible;
the probability that one should disintegrate is Ndt and the remainder, I Ndt ,
is the probsbility for nc disintegration, The generating funection is ,therzfora,

(1-Ndt} 4 (Ndtjx = 1 & Ndbt {x-1)

A time interval of one second can be regarded as the sum of 1/dt intervals
of the length dt, We thersfore get the gonerating function referring to the irtere
wl t by teking the (t/dt)th power of the generating function which refers

to dt, In this way we get
1/d% N(x=1 N WY N K2
’P s [lfdt(xf-l)ﬂ] / 38( ) Te te 1l + € 5T orsceni 1 16)

The coefficients give the probability that in a given seeccnd just O, 1, 2 ete,
atonms should disintegrate and we see that our method permits a fairly simple
derivation of the well known Peisgon distribution.

A second example refers to a particle counter (G N, counter, boron chamber,
ate,) We agsume that the counter is used tc record certain primary events, =.g.
disintegraticn in a scurce, fission in a reastor etec, We define its efficlency
B as the probability. for one individual primary event to be recorded., (We
thus include in E such factors as solid angle or absorption due‘ta intervaning

material), The generating function of the counter is thersfore

C = 1-E+Ex = 14 B (x-1) (17}

If n primary events occur, what the counter does is to repeat n times the

experiment described by the generatinz function CJ . and the outcome is

JiE—— UNCLASSIFIED
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therefore described by the generating function Cn.

If the number of primary evenis is itself subject to fluctuations and
agsociated with a genarating fimction? o then we have to let ’P operate
onC in order to get the generating funetion of the counting experiment, If, in
p:tioular,? 3 eﬁ{x-—%) as befors,(that is, if the mumber of vrimary events
has a Polsson distribution) we get

PC) e ¥ G-1) =en(1+n(x-1) -1) ee ME(-1)

Horice the number of pulses per second again follows a Poisson distributiong
this is obvious singce the pulses are independent, events just a3z much as the
primary events (the disintegrations in the source} only their average rate per
gecond ig not N but EN , However, the formailism can be used in cases where the
primavy events do not follow a Poisson distributicn, e shall very socn encounter
such cases,

2 5=3 Mements of the Distribution

The problems where one can actually determine the generating function
relating to a certain experiment are not too nunercus, However, it is often
possible to calculate the first few mements of the distribﬁtion and in many
cases this is all that i3 needed,
By differentiating the generating funoticn once we get %—F; s f1+2f2x+5f3xz}...
If we now set x 231, we obtainin-fnfﬂ » the mean value of the result,
Py

Similarly, by differentiating twice and setting =x=l , we get

(_‘?:Eg)xul " R :6 ¥

and generally

(3“F) = FlreTI(met) o (aekel)
oxk Inl

Of coturse Fx~l is always 1 siace it Is the sum of the probabilities of

21l possible results,
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’ The first derivative i general nerely offers a check since the mean value
‘ of the result can be calculated from a simpler type of theory which does not
involve gererating functisons, The second derivative ,however,gives a measure of
the fluctuations, Higher derivatives can be caleulated, usually with not, much
greater effort, to gel more deiailed information, but we shall confine our
attenticen to the secornd derivative in what follows,

For the sake of readability, we shall use the letters @ and b

F} 7
oaw - ‘1 L4 -
& aF(:al} s n 3 b -F (xg1) 2 n(n-1) = n_‘ - N

Quantities which are often wanted are the m2an gquare .;1."‘. 2 a4+ b and the
mean square deviation m ® (;:T;}z = ;é % 2 bemes®. The latter has the
Important property of veing additive, if the resulis of two iniependent
experiments are addad, This can be easily verified, We use gabszariptsl and 2
Lo refer te the two experiments and the subzeript 12 to refer to Lheir sunm,
and fird

, ai = [ FoFa] = [F, F+F, rl}m =~[F1+ Q] *aytey

Xzl x-_:}.

The First of thesa two equations weraly indicates that the average is

- . Z . . 2 .ak
ra 2 byt s, 3yt byefagtay)” 3(by)-3, %) (b, az)

additive, which is <bvicus, By adding the two squations we gel uy.

: nl*»“z Fy
If two experiments are combined in cascade, we have + 12 :Fl (F 3} .

rie cdan then zimilarly verif:r the followlng relationsy
/- p) .
4 L ) ]
= [Fl(rz)‘} Fl (Fé) F; and for x
"
ZFF]
Az’

n . r2 i, -\,
Fl (\FZ}'(FE) ff:l(g) Fz , and for x
. The mean square deviation m is of course no longer additive bus followz a

(1]
1

1:uy(2)® %173z

(X}
1]

1t b;(a}’ b1523+a1b2

relation similar to that for b
4
My =M So” 4 A M

Iet us again conzider some examples, The generating funsticns for
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indepondent, cvent:s if N is thelr average number, we found to be P: e HN(x-1})
By differentiating we get
as sz) = NeNQ-1) =y (as it has to be)
b =P"(x=l) = N°e N(1-1) o N‘?; m=bia-a = N (as is well knowfx)

Another exumple refers to the counting of non-Poisson events with a
counter of efficiency E. The generating function of the primary events
be F , that of the connﬁer, C =14+ E(x-3). If a, b and m refer to the
nugber of primary event:s, dps bp, and Lp to the number of recorded events,
we find

agp “a - E, bR'-'-b-Ez,mﬁzaﬁ(lm?)"aa(l-wb-?i) (1e)

Hence, if the deviation from a Poisson distribution is such that m > a,
ther mg >aR' as well, varying lessstrongly with 2 as E decreases and not

a
at all when E = @, as rust clearly be the cuse.

2:574 _Distribution in Length of Individual Fission Chains.

As & first application to chain rea:ct.ions, we ask what is the length of
an individual fission chain, that is, the total number of fissicns resulting
from a single purent fission in a subcritical systen {including the parent
fission). This length will vary from one chain to another and we would like to
know Low big the variations are, We can obtain an equation by looking at this
problen in two different ways and equating what we see. On the'one hand s We
can regard the questicn as one whole and associate with it the generating
function V' (x) = Ztnxn where 'bn is the probapility tha't the chain should
consist of just n fissions. On the cther hand,we can split the process into
the following three stages: _f;he parent, fission generstes some neutrons; Qome
of these cazuae secondary fissions; each of these is itseif the parent of a
chain, |

The first stage has the generating function CI)= Z{gxn where Q; is the

probability of the liberation of just n neutrons. Each of these neutrons

independently has a probability K/U of causing fission'and hence the

o S UNCLASSIFIED
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nunter of fissions caused by one of them is governed by the generating

function F = 1+ (KA)(x~1), The generating function for the total nunber

of seconfgary fissicns, M, is, therefore, obtained by letting d) operate on
F H ]\A,-‘-' é ( F) » The generating function for the nucber of fissicns in
each one| of the chains which takes its origin from a secondary fission is again
T , a8 fHefined above. Since-/v\goyerns the number of these chains, the total
number of fissions in all of them is governed by M (T). In this nurber the
original| parent fission is not included; if we want to include it we must

multiply M(T) with x, the generating function for an experiment for which

we know Lhe answer is 1. The resulting exjpression x MCT)now refers to the
total nunber of neutrons in the entire chain and must, therefore, be the same as

Hence, we get this equation:

T= < MT) as

If we assune Mto be known it would be possible in principle, but rather
difficult(l) to calculate T. However, we can again calculate moments by
(1) o )

Under the special assumption that the number of neutrons enitted in one
fission follows & Poisson distribution,"r can be worked out explicitly
and the result is

=Z("">'nf~ .

taking derivatives and setting x=1. (In the formulae which follow, x is always

equal 1 even though it is not indicated). Thus we get

T-881+P’\. 'T‘ a ll- , , ',(.20)
T s MITH M M T M T - 10 - B0
We can calculate the values ofM and M since M= q) (F) M @ F ancfzn
.M-“-'- @(F )2 ? F". If we remember that © = 1+(x-1)(K/v) we find (always for
x=1) that F'= k/v and F”= O. On the other hand, q) is sinply v, the meun

value of the number n of neutrons emitted in one fission,and (I) the

mean value of n(n-1) which we shall call X,e Hence M K, T 1 KZ(XQ/Z/?>
oMY . ccicis: 1 CLASSIEIED
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Introducing this in equations (20) and (21) we get
sayy s b -AKM%———Q( L2 K Qo0 | om oy pea? 2 B AR QLT
(1-%) TR

The first of these equations is again obvious since the average length of '
a chain is nothing else but the factor 1/( 1<%) by which the numbsr of wiginﬁl
fissions is multiplied by the chaln reaction, The secondepiation shows that
the fluctuations become very large if X approaches unity, and indiéates that
reagurenents of these fluctuations may be nsed to determime Xo 4 |

In practical reactors one never deals with a single chain {except in bombs) .
Usually there are many “source fissions®, that is, fissions which are not ’
cauged by a fisslon neutron, and usually they =cme at random, 'I‘heref‘oz'e,_ifbbt)‘v.&rg‘
are 8§ on an average durlng the time t, the generating ﬁmction for their |
rmmber in t 4s S;es(";‘x), (See Zgquation (16))s To get the gemerating function |
for the total number of fissions in all the chains which originate in the time |

J interval t, we have to let 'S operate on | which gives us

U= g 3T-1)

o w0

Differertiating (and setting x = 1) we find
)

: o % 2 2 2 '
Uz T 2 s/ Us s(TV% ST & —fm+ s L F7) ¢ 2XA-K)
/ ) s

] ’ 1.2 2

mU+U- ) = s 2 (Lp/4%) #1-82
(1-x)°

S0 fur we have spoken aboul the number of fissions happening in a reacter

although we knoew no way of actually determining the accurate numher, If a
counter cf efficiency E is used to record the fissions then the fluctuations
beceme accessible to direet measurement, By usirg equation (18) we find for

the mean sjuare deviation mRof the recorded pulsges

. K2 (%o /y? Jb 2K( 1K
“ g = 8&p \:1+B (2{%:;)2 ( *)-}

. . - (22)

where & is the mean recorded "ridmtie‘r.
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Wibh decre&aing B the fmct.ua.tions cf the recorded pulaes become s;x,al}or
and they approach a Poiaaon diat.ribuxion. 13 E is nade ‘much amaller than (1~K}2

then the rluctuations are "noml" ; that ia s DO greater than 11‘ random e\renta

‘were being ccunt.ed. At E =(1~K}2 it t.akea 1/(3.~K) chains to givo a single pulse A

each chain giving 1/(1-!{) ewmts; yet tha_ rlucws.tions are greater than "normal"
hence the pulses sre not independant. Sim;e different cha.ins are independent of
each other, this nruat maan th&t there is a.n appreciable probability of obtaining

two or more pulaes from Qne chain, although the average nmuber of p.xlses pmduced

~ by one chain 13 only l-K. » Thia gives a vivid indication or the enornous disparity

i the leng'ohs of individual Chdiﬂ& for closeuto-critical systen.a (nhere l-K is

If t.he properties or a aystem change with t.ime the probability P}c that

K eertaixx experiment. '«111 give the result. k will in general alao depend on tima, |

and we have t.o use a time~dependent. generating runction P (t,x) Zpk(t) x to

tiescribe the gxperiment. In som caaas or 1nterest to us a differential oquation

‘ 2
. 2P ’
_for P« ,x) can ba aet up, and from it the mments (a " x-zl' = xel etc, c&n’:»

be found as explicit funcbiona or time, N ~

Let us first consiqgr & cha_n r'eactor without a neutron source. He shall
use the symbol P (t.,x) zpk(t) xk for the generating function co*responding

to the number of neutrcna present :Ln the system, that, means, pk(t) is t.he

probability that there should be k neutrons in the syat.em at Lhe tin.e e To

‘establish a d;fferential equation rcr P (t,x) we proceed as tollows. I at the
.beginning of the small time 1ntez'va1 dt, one neutmn 13 preaent, what 18 thc |
generating runct.ion descmbing the number of neutrons at the end of this intefval?
" The rollowing things Tay happen durine; dt.

(l) The . sare ueut.ron may still be there, (probability l-dt/'t;) ir e

" is t.he mean 1ife of an individual ngutx-on in the syat.em. Since, in thia case,

o “

AR EéflLASSiH%D
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we find one neutron at the end of cur interval dt, this case contributes a
term {1-dt/T)x to our generating function.

| (2) The neutron may have caused fission, probability (K/v){(dt/1).
In this case m néutrous are produced with the probability ’dm’ so our term is
R/ (dt/t) 300 2B or (AN (at/t) i) |

(3} The neutron may have leaked out or may have been absorbed,

probability (l‘k/bb(dt/“c); result: no neutron at the end of dt, hence the tern
in our genefating.function is just (1-K/)(dt/t).

~ Hence, the complete generating function which describes the number of neutrons

at the end of the interval dt is
- gt - ) dk 4 K | = dt
ot _b)x-&(l 1]})‘1:4'1/ ﬂé»q)(x)_,x-&g_1>
=1 - K - K. =1 - K. -1) -
1-E exd P 21K ($0 ) - x
If now the gererating function at the tiue t is P (t,x), the generating functions

at time ¢ 4+ dt 1s obtained by letting Poperate on the generating function
x + g dt/A which describes what happens in the interval dt.

Thus we get
P (tadt,x) =P (t, x4z -‘% )
P (t,x) +at fg P,x) =P (t,x) + g g%;._ -3%; P (t,x) (23)
hence '
| T L= g 2P

ot ax (24)

The same equation is derived by R. Feynman in Volume VI of the Technical
Seriea, by a slightly different procedure and his notation is slightly different.
We car again obtain the moments of the distribution by differentiating

Equation (23) with respect to x, and then putting x = 1, By differentiating P (x,tY.

once we get, since <%§ =7 2 a(t), the average nuuber of neutrons present
x=1
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] ..
at the time t | and resembering that b%j =V, g(xel) = 0, and differenti-
x=]

ate (24) with respect to X, '
Kel
1 'S -\;"* 2a(kel), or o = 1€ gt Ie'”‘t (28)

the familiar expenential inerease (or decreass if K<1 )of the numiker of

neutroeng with time in a chain-reactor,

-
By differentiating Equation (23) twlce we find how 13 FIH=TT = P )
xw
with time: » xal

b - dis &’y
T % 2o ta"F 2 26(K-1)+ak{X0,)

This equaticn can bLe solved by making use ¢f Bquaticn (25) and the resuls is;

N

2, —ese &
b =€ (-— ;g.-e +02 )

(2]
1 dg K-l 1 d“ X
where o 2 .. (_b... T et} s = (....E_.) 2
T Ndx Yy T ¥ T Nax? ye 1374

If we start the reantdon by inserting cne neutron at the time ¢ = 0 O

baindary conditions are trat
tz0 ® 1 bt-{) = 9

These cenditions serve to detexm’ne the integration constantsC and Cz, and

our g0 utinng become

A ’ t 2%
a:et and b=<é,)<€2’x~"ex‘r)
]

For a divergent chalin (A2 ) both &2 3znd b become very large for large t
and the second term in b beeomes quickly negligible so that b growa
proportional to a2, This iz plausidtle since the fluctuations in a divergent
chzin arise at the beginning, wher the numbers involved are still small,

In mogt problems of prastical interest there is a scurce of neutrons in the
system, liberating § neutrona per secend, cn an average, If we want to inclule

such a soucce we have to change ou*' .da.ci e o (23) into
o o o So, oo

P o(t+ar, x) -T"(;, x+,»-'°_.£..‘; (1+ s.dt:[ -1 I?'CL&.S?“%E




: .
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since 1 = 8§ 4448 dt +x is the generating function representing the
arrvival of a source neutron in the interval dt , the probability of which
is indepen‘r‘ient of the number of neutrons already present, Our Equation (24)
then changes into

T %‘g- s 8 %I:;.(P. ST (x=1)

(27)
This equation,teoc, is derived in Feynman's chzpter in Velume VI

{If our systamr contains a source of F fissicns per second, rather than S

neutrcns, we merely have tc replace the term St (x-1) in Equaticn (27) by F1 (@ -1}
By forming the first and second durivatives of Equation 27we zot

T2 = alR-)rst

or X a4 S

and 2tt+3a+ 23

dn
q€
db

aE

If L0 (i.e,, in a suberitical system) a static solution will establish

itself after awhile, when da/dt T du/at w« O , In this case we have

a =S o _8 %

n
[

b

o & - 2(1 . HZ 1) (28)

2,5~ Fluctuations cf a Dragen Fulse

Bquation (28) has been derived for a suberitical system, However, if
a system, after having run at a ¥ slightly below 1 for some time, is slowly
made slightly superecritical, one may expect Bguation (28) still tc hold, Both

<
a and b will,=f ccurse,yo up in an exponential fashion, but the ravio b/a"may
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be expected to stay nearly constant at about 1+ X/2VST . since X
remains close to 1, In a dragon experiment (see Chapter 9) K is first
kept 3lipghtly below 1 for a com;nxatively long time; it is then slowly raised
above 1 (slowly if time is measured in terms of t ) and finally lowered again
below 1, As soon as K exceeds 1 the nentrons begin te multiply very
rapidly and soon their number is so large that t.:'/a2 may be regarded as
accurately constant (the number is so large tha* no furuier‘increase of the
fluctuations can take place), This means that the mumber of neutrons present,
at a certain time after the system has become supereritical, fluctuates from
one experiment te another, but the ®shape" of the pulse (nsutron level plotted
against time) is always the same, Hence,the wlative fluctuation of the
{irtegrated) pulse size should be the same as the reladive fluctuaticn of the
neutrcn level, as indicated by Bquation (28),

A mere suitable measure than b/m2 for the relative fluctuation is the
relative mean square deviation (m/ﬁ-z 3 (benea)/a® = (0/68)+(1/a)el, whors the
term 1/a oan be neglected since we are only interested in cases whers a 1is
very large,

35 we get for the relative mean square deviation of a dragon pulse

(3 -92/7% = $x oo (29)

where J, the intensity of the pulse, may be measured in arbitrary units, Since
from dragon measurements one should be able to get a fairly accurate {igure for
T in the dragon assembly, it might be possible to use a dragon, combined with
a calibrated mock fission source to determine Xz from otservations of how the
pulse size varies from cne drop bto another, Some observations of that sort are
reported in Chapter ¢ , but no definite conclusion canbe drawn frcm them,

2,8=7 Fluctuaticns in a Stationary Reactor

Bquation (28) tells vs how thga‘nstanbaneous number of neutrons in a reactor

fluctuates, To measure these flao&ua.%ieas Qne.um:ld have to use a detectcr Eb
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which is made sensitive fer periods of ’oi.mé T« T 30 that the neutron level
does nct change during any one of these ®gates™, Such an experiment wculd
be very hard tc design in such a way that it gives relevant results,

If the gate time T is made longer the experiment becomes easier to perform,
but mere difficult to interpret, The wean value & for the nurmber of fissicns
N happening during T can be formed by simply integrating the fission rate over
the time T, but this 1s not sc¢ for B, the mean value of N(N «~ 1) because of
the "memory® of the system, In general,this memory has very corplicated effects
because of the presence of delayed neutrons of several different periods,
However, if T is small compared to these periocds c¢ne can treat the delayed
neutrons as a (slowly varying) source of randem neutrors and include them in
the value of S, In this case only the mean life T° of the prompt neutrons
enters into the calculation, Measurements of this kind nave been carried out
(see Chapter 5) and can be used to get the value of T, and of X, ,

To calculate B, the mean value of N{N - 1), where N is the number of
fissions occurring in the time T, we use a generating function of two variables
x and y, where x refers (as before/ to the number n of neutrons pregent at the
time t while y refers to the ®"fissicn score®, s at the time t; that is, to the
mimber ¢f fissions which have taken place between times zers and time t, In
cther werds, if our generating function is P (t, x, y) :E;pik () =t ¥,
then pik(t)is tte prebability that at the time t theras should be just i
neutrons present and that, simultanecusly, the fission score should be k, The

calculation of mean values goeg very much as in the case of one variatleg

. (58)

dx - n ::: nzn-l) B0
x3y3 1 xsysl
2
(b__?_\* S BT EA (%-%) s s{s=1) =B
-2 x-yzl 4 x.y.l
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The differentialoaquation for P can again bé written

T 2P . lﬁ‘fp.St(x-l)

TET O & »x (30)

but ¢ is now a function of beth x and y

& " 1'27-“—!@“) (31)

By forming the first and second derivatives of Bquation (30) (incliuding the
nmixed derivative) and setting xSySl one gets 5 equations from which A and 3

(in which we are mainly interested) can be calculated, Since we are considering
a statiomary system we assums da/dt = db/dt 8 O, The fission score s and
the quantities A, B, and Z relating to it keep growing with time and are
cbtained by integrations the integration constanta are fixed Ly the condition

that A, B, and Z must be zerc at the time zsero, The final results are

Az ES o g5a KS' . xz(xz/f)-;- 2K(1eX) .(t - _1_-_-__‘_8_40%)
i7TI-K) v (1-x)3 1)

where X = Y"' <0, hence joL} 2 I;:K

(x2)

From Eguation (32) we can calculate the fiuctuations of the number of fissions
reccrded by a detector of efficiency B in periocds of the duration T each, If ap
denotes the mean numbter of fissions countad in a perial T, and mp tHhe mean

squave deviation of that number, we get, with the help of Equation (18)

=ag .%.LTJT-WI.Z_g.T_z X2 (K2/2) ¢ 2K (1K) l-é—‘uw
mp 2 ag 1+8 'y )'a ap | 1+E (33

(1-K)? TR

The term in square brackets is for smallvalues of |’ proportional teo T,
dence, the deviation frem a random ercor (for which R = aR} rises linear with
the length T of the ®"gate®™, until T becomes of the order 1w AL greater values
of T the sqmare bracket approaches 1, and Equation {33} in the limit of large T

becomas identical with Equation (22), This must be s0 since for large values
°* : -

‘48'!1(3- sntirely fall within T becomes
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negligible, ant Equation (22) was derivei’ urxder the (tacit) assumption that
all chaing which start in a given Interval also end in it,

Thus, by measuriag the d ependance of the fluctuations on the gate width T,oné
can get information onietil, and from the asymptotie value {(for large T) one ean
draw conclusiona regarding X3 ., Measurpments of that kind are deseribed in
Chapters 4 and 8.

Strictly speaking, measurements of thia kind should be interpreted on the
basis of caleculations which take the existence of several . delayed nsutron
periods into acccunt, Such mleulations were attempted, but the msulting
formulae are sO clumey that no attempt was made to evalnate them, In an
approximate way the delayed neutrons may be regarded as part of the source,

They differ from a true source in that they show greater than normal fiuctua-
tiong, but these are comparatively slow, In the measurements described in
Chapter 8 , the fluctustions due to the varying length of prompt chains were
conputed from a mumber of short runs during which the delayed neutron intensity
did not vary mush, In this case Bquation (33) may be usedz K then means the

multiplisation factor for prompt neutrons alone (which we previously called

\

Kp.i
2.5»8 The | Rossi Ex*:*_rimen’o

S O e .

and teh | 13 the time constant with which the prompt chainsg decay,

B, Rossl propesed a method for measuring of whichdepends on the existencs
aof 11uctuabions and is therefore,treated in this sec’oion("). The methoi of

(2)

B Al e ~ - P

Since in this section oA (as defined befcre) is always negative we
shall uge the letter «f to denvte |t} , in co*xtrast to tro rreviocus
eations,

L R

generating functions dces not lend itself naturally to the treatment of this
problem and I shall give an approximate calculstion which was given by ¥,
Relof fman in TA-101, A more accurate caleulation is given by R, Feymman in

his chapter on fluctuations in Vollme VI of the Technical Series. The
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exparimzntal method is described in Chapier ‘B of this Volume, It
determines the probabilitﬂ:’(t) that a certuin time t after a pulsa, recorded
by counter No, 1 a pulse should be recorded by counter No, 23 the tine ¢ »
can he varied and the variation of this probability on t dstermined,

In order to calculate the probability”P {%)we consider firal "related
pairs®, where the {wo pulses recorded by counters No, 1 and No, 2 arz dus
to neatrons belonging to the same fisaion chain, In this case the two
palsas have a "nearest comnon ancestor®; that is,a fizsion such that twd
different neutrons emitted in it caused the two suh-chalng which,resmctively; ’
gave riss to the two pulses, Ws denote by t, and to the times at which ths
two pulses cccur, and by t, the time of the "nearest commcn ancastor®, The
probability for thisancestor to happen in the time intervaltg 3 % at 1s ¥ ¢,
if Wis the fission rate in the system, The probability that just m -'
neutrons are emittad in this fission is pm . The expacted mumber of

- .t
newtrons present in the system at the time %, is m.€ q((tl °)

, and the
probability that one of them should cause a pulse in counter No, 1 in the
interval dty is Ej dtyfpy
The expected number of neutrons present at time b2 is {(m-1)e -D‘(tz.ﬂ s
hare ws write (m~1l} instead of m because we know that the second pulse
descends from one of the other mel neutrons emitted in the ancestor £ ission
and not from the same neutron from which the first pulse descendss otherwise
our figsion would not be the™nearest common ancestor,® The probability that ons of

these (m-l1)E =(t2-t)

neutyrong should px;oduce a pulse in counter No, 2
in the inverval dt,, is Ezdtz/tfzh B and Bp are At.he efficiencies of the two
counters, measured Iin counts per fission,
By multiplying all these [actors we get :
~X(tp=t)

(8178 piaty (nel)e Epasa
S ‘(_‘i? v
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This expression has to be integr atnd o»’er all possible values of te 3

that is, from-co to ¢, . if )<tz 3 . it must also be sumed over all

values of m, This gives

t1 .
EyEp -0(("31"4?2)/ 2% o o N Bife Xy o ~X(2-ty)
Ty ¢ J € o *NZR A e

To this has to be added the mumber of ®accidental®™ pairg; that is, of those

where the two pulses recorded are caused by neutrons oi'i.ginating from differant
fission chains, Different chainsg are statistically independent and hence
the number cf these pairs is simply
NEy db; NE, dtg z NoBqEp aty dbg
The total m:mber of pairs, related and accidental, has to be divided by
N EI dt1 » the probability of a pulse in counter Ho, 1 during 4t , in ordsr

to get p(t) , where t = ty -ty e

2 X2 <tt p ¢
H EBpdtydt+ N BBy eeemery & dtidt 2 -t
p(t)ds R Y s 6‘ Bt B 3t )df
N Ey dt

New the term NEp is siaply the counting rate C in the second counter, and

if we replace { by (l-Kp)/x-, we get,
P(t)dt ngﬁ&..?...(l £, ) ,cp/f‘ at

This is essmtfaﬁy idenbical with Equation (3} in Chapter 8, where

furthsr digcussion Of the .eguations can ke found together with a description

of the experiments to which :

sr f?

. e b T
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